
2021 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY

SYMPOSIUM
AUTONOMY, ARTIFICIAL INTELLIGENCE, AND ROBOTICS TECHNICAL SESSION

AUGUST 10-12, 2021 - NOVI, MICHIGAN

Dynamic Object Collision Avoidance for Autonomous Multi-Vehicle
Systems in the Robotic Technology Kernel

Matthew Grogan

Southwest Research Institute®, San Antonio, TX

ABSTRACT
As unmanned ground vehicle technology matures and autonomous

platforms become more common, such platforms will invariably be in close

proximity to one another both in formation and independently. With an increasingly

crowded field, the risk of collisions between these platforms grows, and with it the

need for path deconfliction. This paper presents two complementary technological

developments to this end: a pipeline for affirmatively identifying and classifying

dynamic objects, e.g., vehicles or pedestrians; and a pipeline for preventing

collisions with such objects. The efficacy of these techniques is demonstrated in

simulation, and validation on robotic platforms will be undertaken in the near

future.

Citation: Matthew Grogan, “Dynamic Object Collision Avoidance for Autonomous Multi-Vehicle Systems in the

Robotic Technology Kernel”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium

(GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019.

1. Introduction
Strategic coordination of multiple robotic

systems has long been a goal of the U.S.

Military. Such coordination can come in

many forms, but the most prominent recent

examples of these scenarios come in the form

of automated convoys. These have been the

focus of several recent U.S. Army projects,

including Autonomous Mobility Applique

System (AMAS) [1], Autonomous Ground

Resupply (AGR), Expedient Leader-

Follower (ExLF), and Coalition Assured

Autonomous Resupply (CAAR) [2]. Other

less-structured scenarios involving multiple

platforms independently performing

autonomous navigation are also envisioned.

To facilitate these missions, two new

features, a Dynamic Object Manager (DOM)

and a dynamic object collision checking

pipeline, have been developed for inclusion

in the Robotic Technology Kernel (RTK) [3],

the vehicle-agnostic autonomy system of the

U.S. Army Combat Capabilities

Development Command Ground Vehicle

Systems Center (CCDC GVSC).

In convoy settings, autonomous vehicles

need to be able to distinguish between fellow

convoy members and other entities to

respond appropriately. Absent this

distinction, convoy members within sensor

DISTRIBUTION A. Approved for public release,

distribution unlimited. OPSEC 5429

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC 5429

Dynamic Object Collision Avoidance for Autonomous Multi-Vehicle Systems in the Robotic Technology Kernel,

Matthew Grogan

Page 2 of 9

range can appear as obstacles like any other.

In tightly grouped formations, these

neighbors may trigger collision detection

algorithms to invoke collision avoidance

measures such as applying brakes or

changing course, resulting in the undesired

disruption or dispersion of the formation. To

prevent this disruption by friendly vehicles,

an alternative approach is to operate without

obstacle detection and avoidance methods,

but this approach leaves the vehicle blind to

legitimate obstacles. Disambiguating fellow

convoy members from other potential

obstacles resolves both challenges. In this

research, a DOM on each vehicle curates a

persistent list of surrounding dynamic objects

by fusing sensor input and state information

shared between vehicles via radio to produce

an accurate model of the convoy dynamics in

relation to the ego vehicle. This dynamic

object list is used to filter objects identified as

convoy members. Traditional obstacle

detection and avoidance systems can then

operate on the filtered costmap to protect the

vehicle as required.

While this first method enables effective

collision avoidance in convoy scenarios, the

second method reduces conflicts in

unstructured multi-vehicle scenarios. In this

scenario, an arbitrary number of vehicles

operate independently of each other and with

unique objectives; e.g., concurrent squad-

level resupply and evacuation missions,

complex breach, etc. The approach consists

of two parts: an aggregator of state

information such as position, velocity, and

planned trajectory shared between vehicles

via radio; and a proactive dynamic object

collision checking algorithm for determining

potential collisions between vehicles using

that state information. While this system is

nominally designed for handling vehicle

trajectories, any dynamic object with a

known trajectory can be treated in a similar

manner. In this scheme, each vehicle or

object is assigned a priori a priority for

determining right-of-way when trajectories

interact. These right-of-way priorities are

currently pre-configured, but the

infrastructure for situationally adaptive

prioritization is in place. Given shared state,

trajectory, and priorities, each vehicle

deconflicts its trajectory from those with

which it projects it will interact. This

deconfliction occurs at the level of path

execution; i.e., modifying speed commands,

rather than alteration of the path itself. In the

absence of truly cooperative path planning,

choosing path execution as the locus of

control reduces the likelihood of deadlock

scenarios by engaging collision avoidance

behaviors preemptively. This second

technique effectively prevents collisions at

the execution layer, but when paired with a

real-time path planner that continually

updates in response to changes in the world

model, stutter-start and leap-frogging

behavior may result. This undesirable

behavior is mitigated by leveraging the DOM

and costmap level dynamic object filtering

described above.

2. Background
The RTK is a software ecosystem

containing numerous autonomy, perception,

and control components. This section will

outline several components relevant to the

remainder of this paper.

2.1. Path Planners
Within the RTK library, there are various

path waypoint navigation methods, with

Vaquerito [4] and Maverick [5] being

referenced as part of this research effort due

to their distinct use cases.

Vaquerito is a path registration technique

that is applied to manually constructed paths

provided by an operator. It is designed for

consistency of path execution and assumes

that a given path at least loosely corresponds

to a road or trail. Vaquerito operates on one

of the available representations of the

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC 5429

Dynamic Object Collision Avoidance for Autonomous Multi-Vehicle Systems in the Robotic Technology Kernel,

Matthew Grogan

Page 3 of 9

physical environment in RTK, two-

dimensional traversability arrays commonly

referred to as costmaps. Roads and trails have

a high traversability and are represented by a

low cost, while the opposite is true for off-

road areas. Vaquerito compares the operator-

supplied path to a costmap of its environment

and attempts to register that path to regions of

low cost. By doing so, Vaquerito can

overcome localization error due to Global

Positioning System (GPS) and can adapt

inaccurate hand-drawn routes to roads and

trails.

Maverick is a real-time path planner,

comprising a waypoint graph planner and a

Rapidly exploring Random Tree (RRT*)

planner, which is capable of rapid response to

changes in the surrounding environment.

This capability makes it ideal for

unstructured and off-road scenarios.

Maverick takes in a costmap and ordered

waypoints to be achieved and computes the

fastest path passing through each waypoint

each time the costmap changes. As a

probabilistic planner, Maverick-generated

paths, even for the same costmap and

waypoint input, are rarely reproducible.

Path execution is handled by a separate

Path Following Controller (PFC) utilizing the

pure pursuit algorithm [6]. The PFC ensures

that commanded motion does not exceed the

capabilities of the vehicle and provides a

collision checking module. The output of the

PFC is a predicted path consisting of an array

of poses with associated speed and curvature

profiles for motion execution.

2.2. World Modeling
In the RTK library, knowledge of the

surrounding environment is obtained by

sensors such as lidar, radar, or cameras.

Costmaps for use in navigation are

constructed based on the probability of a

given costmap cell being occupied as

determined by available sensor data. For

dynamic environments, cells must be cleared

when an object has moved. In the case of

lidar, a commonly used sensor, this cell

clearing is achieved by raytracing lidar point

returns through occupied cells; i.e., formerly

“occupied” cells that can now be seen

through are no longer considered obstructed.

3. Dynamic Object Handling
The DOM is a new component of the RTK

library. It serves as an aggregator for

information about dynamic objects, both

from local sensor data and as shared by

neighboring vehicles running RTK software.

3.1. Operation
In its current state, the DOM receives

information about dynamic objects from two

sources: other RTK enabled vehicles and

radar. When information sharing is enabled,

each system will transmit state information

about itself such as platform identifier,

position, vehicle dimensions, planned

trajectory, etc., which is received by the

DOM and used to maintain a persistent list of

nearby vehicles. When a platform is equipped

with radar, a persistent list of radar detected

objects is also maintained. When both lists

exist, the radar objects are used to improve

the position of corresponding vehicle objects,

thereby removing GPS error from transmitted

positions. These lists are merged into a single

dynamic object list, excluding duplicate

objects, and shared with the rest of the

system.

3.2. Costmap Filtering
There are two immediate benefits to

filtering dynamic objects from costmaps. The

first is that it allows the PFC to differentiate

between static and dynamic objects and thus

enables a more nuanced treatment; this

capability will be discussed in subsequent

sections. The second is that it can greatly

improve the quality of a costmap.

Challenging scene geometries can result in

dynamic objects leaving “tails” of occupied

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC 5429

Dynamic Object Collision Avoidance for Autonomous Multi-Vehicle Systems in the Robotic Technology Kernel,

Matthew Grogan

Page 4 of 9

costmap cells where the current process of

vacating unoccupied cells is not always

entirely effective. As seen in Figure 1, these

tails can be particularly problematic for

convoy settings where the dynamic object

and corresponding tail lie directly in front of

the following vehicle. In such cases, the

following vehicle could be forced to slow or

even come to stop until the occupied cell is

cleared, or the vehicle path is altered. This

issue can be circumvented at the costmap

level by preventing the cells containing

known dynamic objects from being marked

as occupied in the first place.

With this approach, the costmap-generating

element can subsequently consume the

dynamic object list produced by the DOM

and filter all objects which are specified as

being fellow members of a convoy as well as

any other objects which are not specified as

having come to a stop. The results of filtering

on example data can be seen in Figure 2, an

example costmap which is produced

otherwise identically to that of Figure 1

where a dynamic object “tail” is visible.

4. Collision Prevention
The PFC can be configured to handle

dynamic object collision prevention through

two closely related pipelines. The first uses

basic information about objects such as pose

(position and orientation), object dimensions,

and object speed. The second pipeline utilizes

the object’s predicted trajectory, consisting of

a series of poses with an associated speed

profile, as well as an object priority value to

determine right of way. Only one of these

pipelines will be used per object depending on

PFC configuration and available information.

4.1. Basic Collision Check
Dynamic objects are first projected forward

using their linear speed to account message

latency between DOM and the PFC. Then,

for each pose of the predicted path generated

by the PFC and for each dynamic object, the

following checks are performed.

1. If trajectory collision checking is

enabled and the object has an associated

trajectory, it can be ignored, as it will be

handled by the second collision

checking pipeline.

2. A simple radius check is performed to

determine if further computation is

necessary; if the circumscribing circles

of vehicle footprints for both the

predicted path pose and the dynamic

object pose do not overlap, the object

can be ignored.

3. If this point is reached, a collision may

be possible and a more refined check

utilizing the separating axis theorem [7]

is performed. If no potential collision is

found, the object can be ignored.

4. If the distance between this object and

the vehicle is found to be shorter than

Figure 1. RTK costmap produced from data

recorded during vehicle following tests as

an example where the lead vehicle “tail” is

clearly visible.

Figure 2. RTK costmap produced from data

recorded during vehicle following tests with

lead vehicle, marked by blue square, filtered.

Note the absence of an object “tail”.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC 5429

Dynamic Object Collision Avoidance for Autonomous Multi-Vehicle Systems in the Robotic Technology Kernel,

Matthew Grogan

Page 5 of 9

that of any other object, then the object

orientation and speed is used to

determine if it is currently being

followed by the vehicle. When an

object is being followed, the

commanded speed profile for the

predicted path will be adjusted to

maintain a speed adaptive, safe distance

from the object. Otherwise, the vehicle

will halt for the object. The following

case is illustrated in Figure 3.

4.2. Trajectory Collision Check

The trajectory collision check takes a

similar approach to the basic check with a

few key differences. The following steps are

only performed for dynamic objects with

corresponding priority values greater than

that of the vehicle. First, the dynamic object

is projected forward along its trajectory to

account for any latency. The combined length

of the vehicle and object predicted

trajectories are then compared with the

physical distance between their current

positions; if this distance is greater than the

sum of their path lengths, no collision is

possible. Next, for each pose of the predicted

path generated by the PFC and for each pose

of the dynamic object trajectory, the

following checks are performed:

1. Using the speed profiles associated

with the trajectories, an estimated time

of occupation for each pose is

calculated. If the difference between

these values is greater than pre-

configured time window, the dynamic

object pose can be ignored.

2. A radius check and a subsequent

separating axis check are used as in the

basic collision checking approach.

If a potential collision is found, the speed

profile for the predicted path is recalculated.

5. Performance Evaluation in
Simulation

Due to the challenges of evaluating convoy

performance in a pure simulation

environment, this section will primarily focus

on the collision mitigation aspect of this work

with costmap filtering emulated.

Two scenarios are examined, each involving

three platforms. The first, partially shown in

Figure 4, tests Vaquerito with three routes of

approximately equal length through simulated

trails intersecting at the same distance in a T-

junction. The second, partially shown in

Figure 3, tests the Maverick planner with three

waypoints configured such that the vehicles

must pass through narrow bottlenecks.

Scenarios of this nature are selected because

they have proven challenging in the absence

of the techniques described in this paper. In

the Vaquerito case, this is due to orthogonal

and head-on intersections which can easily

result in deadlock or collision. In the Maverick

case, this is due to narrow gaps and passages

which, when temporarily obstructed by an

unfiltered vehicle, result in highly suboptimal

updates to the planned path. Tests are limited

to three vehicles per scenario because this

configuration is typical of current field testing

numbers and because it is sufficient for

demonstrating more than the most basic of

interactions between vehicles.

Figure 3. Basic collision checking involving

three simulated vehicles traversing a path

(white) between obstacles (red). Here, the

ego vehicle, farthest right, can be seen

adaptively matching the speed of the lead

vehicle, the green rectangle in the tunnel, as

it traverses from right to left. The third

vehicle, the bottom gray rectangle, follows

the ego vehicle.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC 5429

Dynamic Object Collision Avoidance for Autonomous Multi-Vehicle Systems in the Robotic Technology Kernel,

Matthew Grogan

Page 6 of 9

The shortest distance required for each

vehicle in both scenarios is approximately

120 m, and the speed limit has been set to

5 m/s. The metrics used for evaluation are the

time required for mission completion and the

number of deadlocks or collisions observed.

For both scenarios, twenty iterations of the

following feature configurations are tested:

• Case 1: trajectory collision check with

costmap filtering.

• Case 2: trajectory collision check

without costmap filtering.

• Case 3: basic collision check with

costmap filtering.

• Case 4: all dynamic object handling

disabled.

Multiple permutations of priority and

positions were tested; since overall

performance was largely similar across

permutations and for the sake of brevity, only

one permutation for each scenario is reported.

The selected Maverick permutation is the

most adversarial, requiring that the high-

priority vehicle cross paths with the lower-

priority vehicles before reaching the

bottlenecks. The distinction between the

Vaquerito route permutations is marginal, so

the data presented here is representative of

the set as a whole.

5.1. Vaquerito Results
For completed routes with recorded

execution times, Figure 5 shows that feature

configurations with trajectory checking

disabled appear to complete slightly faster.

This belies the fact that these test cases

experienced more failures as shown in

Table 1. Basic dynamic object checking is

sufficient to prevent collisions but is unable

to avoid deadlock situations in which each

vehicle is stopped for another. With dynamic

object handling disabled entirely, vehicles

will operate at higher speeds in proximity,

often narrowly missing one another. In

several instances this resulted in collisions,

highlighted in red.

The trajectory collision checking test cases

are comparable in average route execution

time with a moderate performance gain with

Table 1. Observed failure cases,

highlighted, for Vaquerito scenario.

Figure 5. Average times for Vaquerito

route completion, per vehicle. Bars indicate

standard deviation.

Figure 4. Trajectory collision checking.

Higher and lower priority paths are

represented by the orange and blue path

footprints respectively. The estimated

collision point along the predicted path is

indicated by the transition from green to

red.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC 5429

Dynamic Object Collision Avoidance for Autonomous Multi-Vehicle Systems in the Robotic Technology Kernel,

Matthew Grogan

Page 7 of 9

costmap filtering. Neither experienced

failures. This is to be expected as Vaquerito

is designed to register a given route to a

region of high traversability rather than

actively reroute around dynamic obstacles, so

the resultant paths will not be dramatically

different. The longer execution times and

larger variances seen with the unfiltered

costmap are a consequence of the unfiltered

dynamic objects affecting Vaquerito’s

registration method, causing routes to be

offset away from the center and toward the

higher cost edge of the simulated trails. From

these results, it appears that dynamic object

trajectory checking with costmap filtering

should be the preferred configuration for

Vaquerito route following.

5.2. Maverick Results
As with the Vaquerito test results, failure

cases are excluded from the average mission

completion times. Table 2 illustrates that any

level of dynamic object handling is sufficient

to prevent unbreakable deadlock and

collisions. However, as shown in Figure 6,

there is a pronounced decrease in average

execution times when costmap filtering is

employed. This is a result of Maverick’s

continuous response to changes in the

costmap and the fact that this scenario

requires vehicles to pass through multiple

narrow passages. Without costmap filtering,

whenever a vehicle enters and obstructs such

a passage, each other vehicle with a planned

path through the passage will immediately

compute an alternative, suboptimal path to its

next waypoint. While executing these

alternative paths, vehicles may end up

obstructing yet more passages causing an

extended delay in mission execution due to

suboptimal replanning. Referring to Figure 3,

such a situation might occur when two

vehicles enter the narrow passage in opposite

directions; until one of the vehicles commits

to an alternative route avoiding said passage,

no progress will be made. This process can

repeat several times before all vehicles

successfully execute their missions. Notably,

dynamic object trajectory checking

exacerbates this behavior by artificially

obstructing gaps prior to actual obstruction

by a vehicle, thereby prolonging the

previously described process.

In this scenario, basic dynamic object

checking and trajectory checking with

costmap filtering have nearly identical

performance, trajectory checking having

slightly more variance in execution time.

Though omitted from Figure 6, permutations

of priority and starting position have

comparable results with minor differences in

average execution time owing to the time

required for vehicles to order themselves by

priority before passing through passages.

These results along with those of Section

5.1 indicate that dynamic object trajectory

checking with costmap filtering may be

effective at decreasing path execution time

and preventing deadlock and vehicle

collisions across a range of use cases. With

larger numbers of participating vehicles, the

Table 2. Observed failure cases, highlighted,

for Maverick scenario.

Figure 6. Average times for Maverick mission

completion, per vehicle. Bars indicate standard

deviation.

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC 5429

Dynamic Object Collision Avoidance for Autonomous Multi-Vehicle Systems in the Robotic Technology Kernel,

Matthew Grogan

Page 8 of 9

patterns seen here are expected to become

more pronounced; without dynamic object

handling features, mission execution times

will rise due to the increased likelihood of

adverse vehicle interactions and failure cases

such as collisions become all the more

probable.

6. Future Work
This paper has presented preliminary

results based on simulation for dynamic

object handling and collision mitigation, and

validation on vehicles is ongoing. Radio

bandwidth usage and computational

overhead for large numbers of dynamic

objects in the field should be profiled to

determine whether and when increasing the

number of vehicles decreases system

performance. Persistent dynamic object

tracking using lidar and vision data has also

yet to be implemented with the proposed

approach to handling dynamic objects.

A natural extension of this work is dynamic

assignment of vehicle prioritization. One

likely approach to this is a rule-based

encoding of human knowledge such as giving

way to oncoming traffic or yielding priority

to leading vehicles. Another would be

assignment of priority based on some

measure of the utility of a vehicle’s current

trajectory relative to alternative trajectories

generated in response to the presence of other

nearby vehicles; those with trajectories

subject to the largest reduction in utility may

be given precedence over others.

Prioritization based on utility is closely

related to a second planned extension of this

work, the elevation of path deconfliction

from the motion execution layer to the path

planning layer. By applying similar

principles during path planning rather than

motion execution alone, efficiency of the

system as a whole can be improved by

preventing conflicts at an earlier stage.

7. Conclusion
The two techniques described here

complement each other to provide a

straightforward and effective solution to

effectively navigating friendly multi-vehicle

maneuvers in both structured (formation) and

unstructured (independent) scenarios. The

proposed Dynamic Object Manager

maintains a list of radio-connected dynamic

objects, and the developed dynamic object

collision detection algorithms provide the

capability for avoiding collisions with such

objects. Identified vehicles are filtered at the

costmap level, resulting in improved costmap

quality and path stability and, since the

dynamic object collision detection

algorithms operate independent of the

costmap and world model, any previously

existing safety functions at that level are not

compromised. Recorded real-world data and

simulation experiments have indicated that

the proposed approach can be effective in

handling dynamic objects. These two

capabilities serve as important enabling

technologies for future developments in

autonomous multi-vehicle systems.

8. REFERENCES

[1] Bernard Theisen, Autonomous Mobility

Applique System (AMAS) JCTD, Jun 23,

2011,

https://apps.dtic.mil/sti/pdfs/ADA550916

.pdf Powerpoint Presentation.

[2] D. Pirozzo, J.P. Hecker, A. Dickinson, T.

Schulteis, J. Ratowski, and B. Theisen,

“Integration of the Autonomous Mobility

Appliqué System into the Robotic

Technology Kernel”, In Proceedings of

the Ground Vehicle Systems Engineering

and Technology Symposium (GVSETS),

NDIA, Novi, MI, Aug. 13-15, 2019.

[3] Dr. Robert Kania; Mr. Phil Frederick; Mr.

William Pritchett; Mr. Brian Wood; Mr.

Chris Mentzer; Dr. Elliot Johnson

"Dismounted Soldier Autonomy Tools

(DSAT) - From Conception to

Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC 5429

Dynamic Object Collision Avoidance for Autonomous Multi-Vehicle Systems in the Robotic Technology Kernel,

Matthew Grogan

Page 9 of 9

Deployment", In Proceedings of the

Ground Vehicle Systems and Technology

Symposium (GVSETS), NDIA, Novi, MI,

Aug. 12-14, 2014.

 [4] N. Alton, M. Bries, J. Hernandez,

“Autonomous Convoy Operations in the

Robotic Technology Kernel (RTK)”, In

Proceedings of the Ground Vehicle

Systems Engineering and Technology

Symposium (GVSETS), NDIA, Novi, MI,

Aug. 11–13, 2020.

[5] N. Seegmiller, J. Gassaway, E. Johnson

and J. Towler, "The Maverick planner: An

efficient hierarchical planner for

autonomous vehicles in unstructured

environments," 2017 IEEE/RSJ

International Conference on Intelligent

Robots and Systems (IROS), 2017, pp.

2018-2023, doi:

10.1109/IROS.2017.8206021.

[6] R.C. Coulter, “Implementation of the pure

pursuit path tracking algorithm”,

Carnegie-Mellon UNIV Pittsburgh PA

Robotics INST, 1992.

 [7] S. Boyd, L. Vandenberghe. “Convex

optimization”, Cambridge university

press, 2004.

