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ABSTRACT 
As unmanned ground vehicle technology matures and autonomous 

platforms become more common, such platforms will invariably be in close 

proximity to one another both in formation and independently. With an increasingly 

crowded field, the risk of collisions between these platforms grows, and with it the 

need for path deconfliction. This paper presents two complementary technological 

developments to this end: a pipeline for affirmatively identifying and classifying 

dynamic objects, e.g., vehicles or pedestrians; and a pipeline for preventing 

collisions with such objects. The efficacy of these techniques is demonstrated in 

simulation, and validation on robotic platforms will be undertaken in the near 

future. 

 
Citation: Matthew Grogan, “Dynamic Object Collision Avoidance for Autonomous Multi-Vehicle Systems in the 
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1. Introduction 
Strategic coordination of multiple robotic 

systems has long been a goal of the U.S. 

Military. Such coordination can come in 

many forms, but the most prominent recent 

examples of these scenarios come in the form 

of automated convoys. These have been the 

focus of several recent U.S. Army projects, 

including Autonomous Mobility Applique 

System (AMAS) [1], Autonomous Ground 

Resupply (AGR), Expedient Leader-

Follower (ExLF), and Coalition Assured 

Autonomous Resupply (CAAR) [2]. Other 

less-structured scenarios involving multiple 

platforms independently performing 

autonomous navigation are also envisioned. 

To facilitate these missions, two new 

features, a Dynamic Object Manager (DOM) 

and a dynamic object collision checking 

pipeline, have been developed for inclusion 

in the Robotic Technology Kernel (RTK) [3], 

the vehicle-agnostic autonomy system of the 

U.S. Army Combat Capabilities 

Development Command Ground Vehicle 

Systems Center (CCDC GVSC). 

In convoy settings, autonomous vehicles 

need to be able to distinguish between fellow 

convoy members and other entities to 

respond appropriately. Absent this 

distinction, convoy members within sensor 

 

DISTRIBUTION A. Approved for public release, 

distribution unlimited. OPSEC 5429 



Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC 5429 

Dynamic Object Collision Avoidance for Autonomous Multi-Vehicle Systems in the Robotic Technology Kernel, 

Matthew Grogan 

 

Page 2 of 9 

range can appear as obstacles like any other. 

In tightly grouped formations, these 

neighbors may trigger collision detection 

algorithms to invoke collision avoidance 

measures such as applying brakes or 

changing course, resulting in the undesired 

disruption or dispersion of the formation. To 

prevent this disruption by friendly vehicles, 

an alternative approach is to operate without 

obstacle detection and avoidance methods, 

but this approach leaves the vehicle blind to 

legitimate obstacles. Disambiguating fellow 

convoy members from other potential 

obstacles resolves both challenges. In this 

research, a DOM on each vehicle curates a 

persistent list of surrounding dynamic objects 

by fusing sensor input and state information 

shared between vehicles via radio to produce 

an accurate model of the convoy dynamics in 

relation to the ego vehicle. This dynamic 

object list is used to filter objects identified as 

convoy members. Traditional obstacle 

detection and avoidance systems can then 

operate on the filtered costmap to protect the 

vehicle as required. 

While this first method enables effective 

collision avoidance in convoy scenarios, the 

second method reduces conflicts in 

unstructured multi-vehicle scenarios. In this 

scenario, an arbitrary number of vehicles 

operate independently of each other and with 

unique objectives; e.g., concurrent squad-

level resupply and evacuation missions, 

complex breach, etc. The approach consists 

of two parts: an aggregator of state 

information such as position, velocity, and 

planned trajectory shared between vehicles 

via radio; and a proactive dynamic object 

collision checking algorithm for determining 

potential collisions between vehicles using 

that state information. While this system is 

nominally designed for handling vehicle 

trajectories, any dynamic object with a 

known trajectory can be treated in a similar 

manner. In this scheme, each vehicle or 

object is assigned a priori a priority for 

determining right-of-way when trajectories 

interact. These right-of-way priorities are 

currently pre-configured, but the 

infrastructure for situationally adaptive 

prioritization is in place. Given shared state, 

trajectory, and priorities, each vehicle 

deconflicts its trajectory from those with 

which it projects it will interact. This 

deconfliction occurs at the level of path 

execution; i.e., modifying speed commands, 

rather than alteration of the path itself. In the 

absence of truly cooperative path planning, 

choosing path execution as the locus of 

control reduces the likelihood of deadlock 

scenarios by engaging collision avoidance 

behaviors preemptively. This second 

technique effectively prevents collisions at 

the execution layer, but when paired with a 

real-time path planner that continually 

updates in response to changes in the world 

model, stutter-start and leap-frogging 

behavior may result. This undesirable 

behavior is mitigated by leveraging the DOM 

and costmap level dynamic object filtering 

described above. 

 

2. Background 
The RTK is a software ecosystem 

containing numerous autonomy, perception, 

and control components. This section will 

outline several components relevant to the 

remainder of this paper. 

 

2.1. Path Planners 
Within the RTK library, there are various 

path waypoint navigation methods, with 

Vaquerito [4] and Maverick [5] being 

referenced as part of this research effort due 

to their distinct use cases.  

Vaquerito is a path registration technique 

that is applied to manually constructed paths 

provided by an operator. It is designed for 

consistency of path execution and assumes 

that a given path at least loosely corresponds 

to a road or trail. Vaquerito operates on one 

of the available representations of the 
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physical environment in RTK, two-

dimensional traversability arrays commonly 

referred to as costmaps. Roads and trails have 

a high traversability and are represented by a 

low cost, while the opposite is true for off-

road areas.  Vaquerito compares the operator-

supplied path to a costmap of its environment 

and attempts to register that path to regions of 

low cost. By doing so, Vaquerito can 

overcome localization error due to Global 

Positioning System (GPS) and can adapt 

inaccurate hand-drawn routes to roads and 

trails. 

Maverick is a real-time path planner, 

comprising a waypoint graph planner and a 

Rapidly exploring Random Tree (RRT*) 

planner, which is capable of rapid response to 

changes in the surrounding environment. 

This capability makes it ideal for 

unstructured and off-road scenarios. 

Maverick takes in a costmap and ordered 

waypoints to be achieved and computes the 

fastest path passing through each waypoint 

each time the costmap changes. As a 

probabilistic planner, Maverick-generated 

paths, even for the same costmap and 

waypoint input, are rarely reproducible. 

Path execution is handled by a separate 

Path Following Controller (PFC) utilizing the 

pure pursuit algorithm [6]. The PFC ensures 

that commanded motion does not exceed the 

capabilities of the vehicle and provides a 

collision checking module. The output of the 

PFC is a predicted path consisting of an array 

of poses with associated speed and curvature 

profiles for motion execution.  

 

2.2. World Modeling 
In the RTK library, knowledge of the 

surrounding environment is obtained by 

sensors such as lidar, radar, or cameras. 

Costmaps for use in navigation are 

constructed based on the probability of a 

given costmap cell being occupied as 

determined by available sensor data. For 

dynamic environments, cells must be cleared 

when an object has moved.  In the case of 

lidar, a commonly used sensor, this cell 

clearing is achieved by raytracing lidar point 

returns through occupied cells; i.e., formerly 

“occupied” cells that can now be seen 

through are no longer considered obstructed. 

 

3. Dynamic Object Handling 
The DOM is a new component of the RTK 

library. It serves as an aggregator for 

information about dynamic objects, both 

from local sensor data and as shared by 

neighboring vehicles running RTK software.  

 

3.1. Operation 
In its current state, the DOM receives 

information about dynamic objects from two 

sources: other RTK enabled vehicles and 

radar. When information sharing is enabled, 

each system will transmit state information 

about itself such as platform identifier, 

position, vehicle dimensions, planned 

trajectory, etc., which is received by the 

DOM and used to maintain a persistent list of 

nearby vehicles. When a platform is equipped 

with radar, a persistent list of radar detected 

objects is also maintained. When both lists 

exist, the radar objects are used to improve 

the position of corresponding vehicle objects, 

thereby removing GPS error from transmitted 

positions. These lists are merged into a single 

dynamic object list, excluding duplicate 

objects, and shared with the rest of the 

system.  

 

3.2. Costmap Filtering 
There are two immediate benefits to 

filtering dynamic objects from costmaps. The 

first is that it allows the PFC to differentiate 

between static and dynamic objects and thus 

enables a more nuanced treatment; this 

capability will be discussed in subsequent 

sections. The second is that it can greatly 

improve the quality of a costmap. 

Challenging scene geometries can result in 

dynamic objects leaving “tails” of occupied 
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costmap cells where the current process of 

vacating unoccupied cells is not always 

entirely effective. As seen in Figure 1, these 

tails can be particularly problematic for 

convoy settings where the dynamic object 

and corresponding tail lie directly in front of 

the following vehicle. In such cases, the 

following vehicle could be forced to slow or 

even come to stop until the occupied cell is 

cleared, or the vehicle path is altered. This 

issue can be circumvented at the costmap 

level by preventing the cells containing 

known dynamic objects from being marked 

as occupied in the first place. 

 

 
With this approach, the costmap-generating 

element can subsequently consume the 

dynamic object list produced by the DOM 

and filter all objects which are specified as 

being fellow members of a convoy as well as 

any other objects which are not specified as 

having come to a stop. The results of filtering 

on example data can be seen in Figure 2, an 

example costmap which is produced 

otherwise identically to that of Figure 1 

where a dynamic object “tail” is visible.  

 

4. Collision Prevention 
The PFC can be configured to handle 

dynamic object collision prevention through 

two closely related pipelines. The first uses 

basic information about objects such as pose 

(position and orientation), object dimensions, 

and object speed. The second pipeline utilizes 

the object’s predicted trajectory, consisting of 

a series of poses with an associated speed 

profile, as well as an object priority value to 

determine right of way. Only one of these 

pipelines will be used per object depending on 

PFC configuration and available information. 

 

4.1. Basic Collision Check 
Dynamic objects are first projected forward 

using their linear speed to account message 

latency between DOM and the PFC. Then, 

for each pose of the predicted path generated 

by the PFC and for each dynamic object, the 

following checks are performed. 

1. If trajectory collision checking is 

enabled and the object has an associated 

trajectory, it can be ignored, as it will be 

handled by the second collision 

checking pipeline. 

2. A simple radius check is performed to 

determine if further computation is 

necessary; if the circumscribing circles 

of vehicle footprints for both the 

predicted path pose and the dynamic 

object pose do not overlap, the object 

can be ignored. 

3. If this point is reached, a collision may 

be possible and a more refined check 

utilizing the separating axis theorem [7] 

is performed. If no potential collision is 

found, the object can be ignored. 

4. If the distance between this object and 

the vehicle is found to be shorter than 

Figure 1. RTK costmap produced from data 

recorded during vehicle following tests as 

an example where the lead vehicle “tail” is 

clearly visible. 

Figure 2. RTK costmap produced from data 

recorded during vehicle following tests with 

lead vehicle, marked by blue square, filtered. 

Note the absence of an object “tail”. 
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that of any other object, then the object 

orientation and speed is used to 

determine if it is currently being 

followed by the vehicle. When an 

object is being followed, the 

commanded speed profile for the 

predicted path will be adjusted to 

maintain a speed adaptive, safe distance 

from the object. Otherwise, the vehicle 

will halt for the object. The following 

case is illustrated in Figure 3. 

 
4.2. Trajectory Collision Check 

The trajectory collision check takes a 

similar approach to the basic check with a 

few key differences. The following steps are 

only performed for dynamic objects with 

corresponding priority values greater than 

that of the vehicle. First, the dynamic object 

is projected forward along its trajectory to 

account for any latency. The combined length 

of the vehicle and object predicted 

trajectories are then compared with the 

physical distance between their current 

positions; if this distance is greater than the 

sum of their path lengths, no collision is 

possible. Next, for each pose of the predicted 

path generated by the PFC and for each pose 

of the dynamic object trajectory, the 

following checks are performed: 

1. Using the speed profiles associated 

with the trajectories, an estimated time 

of occupation for each pose is 

calculated. If the difference between 

these values is greater than pre-

configured time window, the dynamic 

object pose can be ignored. 

2. A radius check and a subsequent 

separating axis check are used as in the 

basic collision checking approach. 

If a potential collision is found, the speed 

profile for the predicted path is recalculated. 
 

5. Performance Evaluation in 
Simulation 

Due to the challenges of evaluating convoy 

performance in a pure simulation 

environment, this section will primarily focus 

on the collision mitigation aspect of this work 

with costmap filtering emulated.  

Two scenarios are examined, each involving 

three platforms. The first, partially shown in 

Figure 4, tests Vaquerito with three routes of 

approximately equal length through simulated 

trails intersecting at the same distance in a T-

junction. The second, partially shown in 

Figure 3, tests the Maverick planner with three 

waypoints configured such that the vehicles 

must pass through narrow bottlenecks. 

Scenarios of this nature are selected because 

they have proven challenging in the absence 

of the techniques described in this paper. In 

the Vaquerito case, this is due to orthogonal 

and head-on intersections which can easily 

result in deadlock or collision. In the Maverick 

case, this is due to narrow gaps and passages 

which, when temporarily obstructed by an 

unfiltered vehicle, result in highly suboptimal 

updates to the planned path. Tests are limited 

to three vehicles per scenario because this 

configuration is typical of current field testing 

numbers and because it is sufficient for 

demonstrating more than the most basic of 

interactions between vehicles. 

Figure 3. Basic collision checking involving 

three simulated vehicles traversing a path 

(white) between obstacles (red). Here, the 

ego vehicle, farthest right, can be seen 

adaptively matching the speed of the lead 

vehicle, the green rectangle in the tunnel, as 

it traverses from right to left. The third 

vehicle, the bottom gray rectangle, follows 

the ego vehicle. 
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The shortest distance required for each 

vehicle in both scenarios is approximately 

120 m, and the speed limit has been set to 

5 m/s. The metrics used for evaluation are the 

time required for mission completion and the 

number of deadlocks or collisions observed. 

For both scenarios, twenty iterations of the 

following feature configurations are tested:  

• Case 1: trajectory collision check with 

costmap filtering. 

• Case 2: trajectory collision check 

without costmap filtering. 

• Case 3: basic collision check with 

costmap filtering. 

• Case 4: all dynamic object handling 

disabled. 

Multiple permutations of priority and 

positions were tested; since overall 

performance was largely similar across 

permutations and for the sake of brevity, only 

one permutation for each scenario is reported. 

The selected Maverick permutation is the 

most adversarial, requiring that the high-

priority vehicle cross paths with the lower-

priority vehicles before reaching the 

bottlenecks. The distinction between the 

Vaquerito route permutations is marginal, so 

the data presented here is representative of 

the set as a whole. 

 

5.1. Vaquerito Results 
For completed routes with recorded 

execution times, Figure 5 shows that feature 

configurations with trajectory checking 

disabled appear to complete slightly faster. 

This belies the fact that these test cases 

experienced more failures as shown in 

Table 1. Basic dynamic object checking is 

sufficient to prevent collisions but is unable 

to avoid deadlock situations in which each 

vehicle is stopped for another. With dynamic 

object handling disabled entirely, vehicles 

will operate at higher speeds in proximity, 

often narrowly missing one another. In 

several instances this resulted in collisions, 

highlighted in red.  

 

 

 
The trajectory collision checking test cases 

are comparable in average route execution 

time with a moderate performance gain with 

Table 1. Observed failure cases, 

highlighted, for Vaquerito scenario. 

 

Figure 5. Average times for Vaquerito 

route completion, per vehicle. Bars indicate 

standard deviation. 

Figure 4. Trajectory collision checking. 

Higher and lower priority paths are 

represented by the orange and blue path 

footprints respectively. The estimated 

collision point along the predicted path is 

indicated by the transition from green to 

red. 
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costmap filtering. Neither experienced 

failures. This is to be expected as Vaquerito 

is designed to register a given route to a 

region of high traversability rather than 

actively reroute around dynamic obstacles, so 

the resultant paths will not be dramatically 

different. The longer execution times and 

larger variances seen with the unfiltered 

costmap are a consequence of the unfiltered 

dynamic objects affecting Vaquerito’s 

registration method, causing routes to be 

offset away from the center and toward the 

higher cost edge of the simulated trails. From 

these results, it appears that dynamic object 

trajectory checking with costmap filtering 

should be the preferred configuration for 

Vaquerito route following. 
 

5.2. Maverick Results 
As with the Vaquerito test results, failure 

cases are excluded from the average mission 

completion times. Table 2 illustrates that any 

level of dynamic object handling is sufficient 

to prevent unbreakable deadlock and 

collisions. However, as shown in Figure 6, 

there is a pronounced decrease in average 

execution times when costmap filtering is 

employed. This is a result of Maverick’s 

continuous response to changes in the 

costmap and the fact that this scenario 

requires vehicles to pass through multiple 

narrow passages. Without costmap filtering, 

whenever a vehicle enters and obstructs such 

a passage, each other vehicle with a planned 

path through the passage will immediately 

compute an alternative, suboptimal path to its 

next waypoint. While executing these 

alternative paths, vehicles may end up 

obstructing yet more passages causing an 

extended delay in mission execution due to 

suboptimal replanning. Referring to Figure 3, 

such a situation might occur when two 

vehicles enter the narrow passage in opposite 

directions; until one of the vehicles commits 

to an alternative route avoiding said passage, 

no progress will be made. This process can 

repeat several times before all vehicles 

successfully execute their missions. Notably, 

dynamic object trajectory checking 

exacerbates this behavior by artificially 

obstructing gaps prior to actual obstruction 

by a vehicle, thereby prolonging the 

previously described process.  

 

 

 
In this scenario, basic dynamic object 

checking and trajectory checking with 

costmap filtering have nearly identical 

performance, trajectory checking having 

slightly more variance in execution time. 

Though omitted from Figure 6, permutations 

of priority and starting position have 

comparable results with minor differences in 

average execution time owing to the time 

required for vehicles to order themselves by 

priority before passing through passages.  

These results along with those of Section 

5.1 indicate that dynamic object trajectory 

checking with costmap filtering may be 

effective at decreasing path execution time 

and preventing deadlock and vehicle 

collisions across a range of use cases. With 

larger numbers of participating vehicles, the 

Table 2. Observed failure cases, highlighted, 

for Maverick scenario. 

 

Figure 6. Average times for Maverick mission 

completion, per vehicle. Bars indicate standard 

deviation. 
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patterns seen here are expected to become 

more pronounced; without dynamic object 

handling features, mission execution times 

will rise due to the increased likelihood of 

adverse vehicle interactions and failure cases 

such as collisions become all the more 

probable. 

 

6. Future Work 
This paper has presented preliminary 

results based on simulation for dynamic 

object handling and collision mitigation, and 

validation on vehicles is ongoing. Radio 

bandwidth usage and computational 

overhead for large numbers of dynamic 

objects in the field should be profiled to 

determine whether and when increasing the 

number of vehicles decreases system 

performance. Persistent dynamic object 

tracking using lidar and vision data has also 

yet to be implemented with the proposed 

approach to handling dynamic objects.  

A natural extension of this work is dynamic 

assignment of vehicle prioritization. One 

likely approach to this is a rule-based 

encoding of human knowledge such as giving 

way to oncoming traffic or yielding priority 

to leading vehicles. Another would be 

assignment of priority based on some 

measure of the utility of a vehicle’s current 

trajectory relative to alternative trajectories 

generated in response to the presence of other 

nearby vehicles; those with trajectories 

subject to the largest reduction in utility may 

be given precedence over others. 

Prioritization based on utility is closely 

related to a second planned extension of this 

work, the elevation of path deconfliction 

from the motion execution layer to the path 

planning layer. By applying similar 

principles during path planning rather than 

motion execution alone, efficiency of the 

system as a whole can be improved by 

preventing conflicts at an earlier stage. 

 

7. Conclusion 
The two techniques described here 

complement each other to provide a 

straightforward and effective solution to 

effectively navigating friendly multi-vehicle 

maneuvers in both structured (formation) and 

unstructured (independent) scenarios. The 

proposed Dynamic Object Manager 

maintains a list of radio-connected dynamic 

objects, and the developed dynamic object 

collision detection algorithms provide the 

capability for avoiding collisions with such 

objects. Identified vehicles are filtered at the 

costmap level, resulting in improved costmap 

quality and path stability and, since the 

dynamic object collision detection 

algorithms operate independent of the 

costmap and world model, any previously 

existing safety functions at that level are not 

compromised. Recorded real-world data and 

simulation experiments have indicated that 

the proposed approach can be effective in 

handling dynamic objects. These two 

capabilities serve as important enabling 

technologies for future developments in 

autonomous multi-vehicle systems. 
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